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Abstract
The ground state phase diagram of the frustrated ferromagnetic spin- 1

2 chain is investigated
using the exact diagonalization technique. It is shown that there is a jump in the spontaneous
magnetization and the ground state of the system undergoes a phase transition from a
ferromagnetic phase to a phase with dimer ordering between next-nearest-neighbor spins. Near
the quantum transition point, the critical behavior of the ground state energy is analyzed
numerically. Using a practical finite-size scaling approach, the critical exponent of the ground
state energy is computed. Our numerical results are in good agreement with the results obtained
with other theoretical approaches.

1. Introduction

The physics of frustrated quantum spin systems has attracted
much interest from experimental and theoretical points of view.
The spin- 1

2 Hamiltonian of the frustrated model on a periodic
chain of N sites is

H =
N∑

n=1

(J1
−→
S n · −→

S n+1 + J2
−→
S n · −→S n+2), (1)

where
−→
S n represents the S = 1

2 operator at the nth site and
J1, J2 are the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) interactions. We introduce the parameter α = J2

|J1| for
convenience.

This model with NN and NNN antiferromagnetic (AF)
interactions (J1, J2 > 0) is well studied [1–8]. This chain
is well known to display a quantum phase transition from
a gapless, translationally invariant state with algebraic spin
correlations (the spin fluid phase) to a dimer gapful state at
αc � 0.2411 [3]. At the Majumdar–Ghosh point [5], i.e. at
α = 0.5, the ground state is exactly solvable. It is a doubly
degenerate dimer product of singlet pairs on neighboring sites.
In general, the ground state is doubly degenerate for α > αc.
For large J2 (α > 0.5) an incommensurate phase appears
in the ground state phase diagram [4, 6]. The behavior of
frustrated chains in the presence of a uniform magnetic field
was first studied by Chitra [9]. Recently the effect of a uniform
magnetic field on the J1 − J2 model has been discussed by
Kolezuk and Vekua [10]. They showed that a chiral phase
emerges in isotropic frustrated spin chains as well if they are

subject to a strong external magnetic field. When J1 > 0 and
J2 < 0 (AF–F; F, ferromagnetic), the system is believed to be
in a gapless antiferromagnetic phase for any permissible values
of J1 and J2.

Relatively little attention has been paid to frustrated
ferromagnetic chains, i.e. J1 < 0 and J2 > 0. From
an experimental point of view, recently discovered materials
can be described by parameters with this combinations of
signs. Rb2Cu2Mo3O12 is believed to be described [11, 12]
by J1 ∼ −3J2, and LiCuVo4, which lies in a different
parameter regime, by J1 ∼ −0.3J2 [13]. A recent study [14]
of the thermodynamics of model (1) was motivated by the
experimental results for Rb2Cu2Mo3O12. From a theoretical
point of view, the latter model has been the subject of many
studies [14–20]. However, a complete picture of the phases
of this model as a function of the frustration parameter α is
unclear up to now.

In the case of J1 < 0 and J2 > 0 (F–AF) with 0 � α < 1
4 ,

the ground state is fully ferromagnetic and lies in the subspace
Stot = N/2 with the degeneracy N + 1, and becomes [15] an
(S = 0) incommensurate singlet state [21, 22] for α > 1

4 ; also
the lattice translational symmetry is thought to be broken. It
is suggested that in this incommensurate singlet state the gap
is strongly suppressed [23]. At the critical point αc = 1

4 , two
distinct configurations with the energy

Eg = − 3

16
N |J1|, (2)

are the ground states [24]. One is fully ferromagnetic with
Stot = N/2, the other is a singlet state with Stot = 0.
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The wavefunction of the singlet state at αc = 1
4 is known

exactly [24, 25].
In the vicinity of the critical point αc = 1

4 , at 0 < γ � 1
(γ = α − 1

4 ) the singlet ground state energy behaves as
E0 ∼ γ β , where β is a critical exponent. The classical
approximation gives β = 2. The spin-wave theory as well as
some other approximations [6, 17] do not change this critical
exponent. In [26], using variational approaches, it was shown
that the quantum fluctuations definitely change the classical
critical exponent. It was conjectured that strong quantum
fluctuations change the critical exponent and β = 5

3 . In a recent
work, Dmitriev et al [27] studied the properties of this model
using the perturbation theory (PT) in the small parameter
characterizing the deviation from the transition point. They
considered the Hamiltonian (1) as

H = H0 + Vγ

H0 = −
∑

n

−→
S n · −→

S n+1 + 1
4

∑

n

−→
S n · −→S n+2

Vγ = γ
∑

n

−→
S n · −→S n+2,

(3)

with a small parameter 0 < γ � 1. Since the perturbation Vγ
conserves the total spin S2, the PT to the lowest singlet state
|ψ〉 of the Hamiltonian H0 involves only singlet excited states.
They showed that the PT allowed them to estimate the critical
exponent of the ground state energy as

E0(γ ) ∼ −Nγ β β = 5/3, (4)

which is in good agreement with their previous result [26]. On
the other hand, they claimed that the exact diagonalization of
finite chains shows a complicated irregular size dependence
of the ground state energy, which makes the numerical
estimation of the critical exponent β impossible [27]. In a
very recent work, the ground state phase diagram of the spin-
1
2 zigzag chain with weakly anisotropic ferromagnetic NN and
antiferromagnetic NNN interactions was studied [28]. It was
shown that the ground state phase diagram consists of the fully
polarized ferromagnetic, the commensurate spin-liquid and the
incommensurate phases.

In this paper we present our numerical results on the
ground state phase diagram of the 1D frustrated ferromagnetic
spin- 1

2 model. Our results are obtained using the exact
diagonalization technique. In section 2, we present the results
of exact diagonalization calculations on the ground state phase
diagram of the model. In section 3, we discuss a practical
finite-size scaling approach and find the critical exponent of
the ground state energy in the vicinity of the critical point
αc = 1

4 . Finally, our summary and conclusions are presented
in section 4.

2. The ground state phase diagram

An important goal in the study of quantum spin systems is the
search for novel states emerging from competing interactions
in the ground state phase diagram. In particular, the study of
continuous phase transitions has been one of the most fertile

Figure 1. The spontaneous magnetization Mx as a function of the
parameter α for different chain lengths N = 26, 28, 30.

branches of theoretical physics in recent decades. Each phase
can usually be characterized by an order parameter. Often, the
choice of an order parameter is obvious; however, in some
cases finding an appropriate order parameter is complicated.
As we mentioned, the complete picture of the phases of
this model as a function of the frustration parameter α is
not completely clear. It is known that the ground state is
ferromagnetic at 0 < α < αc and a second-order phase
transition happens to the incommensurate singlet phase.

In order to explore the nature of the spectrum and the
phase transition, we used the Lanczos method to diagonalize
numerically finite (up to N = 30 sites) chain systems.
The energies of the few lowest eigenstates were obtained
for chains with periodic boundary conditions. The Lanczos
method and the related recursion methods [30–33], possibly
with appropriate implementations, have emerged as one of the
most important computational procedures, mainly when a few
extreme eigenvalues are desired.

To recognize the different phases induced by the NNN
exchange interaction in the ground state phase diagram,
we have implemented the Lanczos algorithm for finite-size
chains to calculate the order parameters and the various spin
correlation functions. The first insight into the nature of
the different phases can be obtained by studying the uniform
magnetization

M x,y,z = 1

N

∑

j

〈
Sx,y,z

j

〉
, (5)

where the notation 〈· · ·〉 represents the expectation value at the
lowest energy state.

In figure 1 we have plotted the spontaneous magnetization,
M x , versus α for the chain of different lengths N = 26, 28, 30.
To arrive at this plot we considered |J1| = 1 and different
values of the parameter 0 < α < 0.5. One of the
most interesting known properties of this model is that the
magnetization as a function of applied magnetic field displays a
jump for certain parameters [34, 35, 18]. It can be seen that the
spontaneous magnetization M x remains close to the saturation

2



J. Phys.: Condens. Matter 20 (2008) 335230 S Mahdavifar

value for 0 < α < αc. This behavior is in agreement with
expectations based on the general statement that for values
of the parameter 0 < α < αc the ground state is in the
gapped ferromagnetic phase. At a critical value α = αc,
the spontaneous magnetization jumps to zero. However, we
observe that the metamagnetic phase transition also occurs in
the absence of the external uniform magnetic field. The zero
value of the spontaneous magnetization in the region α > αc

shows that the ground state of the model is not magnetic.
To display the ground state magnetic phase diagram of the

model we have calculated the dimer order parameters. Because
of two types of coupling constants, we introduce two kinds of
dimerization as

dF = 1

N

∑

n

〈−→
S n · −→S n+1

〉
, (6)

dAF = 1

N

∑

n

〈−→
S n · −→S n+2

〉
. (7)

It is clear that the parameter dF(dAF) is the F(AF)-dimer order
parameter. In figures 2(a) and (b) we have plotted F(AF)-
dimer order parameter as a function of the parameter α for
the chain with |J1| = 1.0 and different values of the chain
lengths N = 20, 26. As is clearly seen from this figure, for
α < αc, dF and dAF are very close to 0.25, which confirm
that the ground state of the system is in the fully polarized
ferromagnetic phase. For α > αc and large enough values of
parameter α, the F-dimer order parameter is slightly more than
zero (dF ∼ 0.05) but the AF-dimer order parameter is less than
saturation value (−0.75; dAF ∼ −0.45). Thus, increasing the
antiferromagnetic exchange J2 from critical value αc, quantum
fluctuations suppresses the ferromagnetic ordering and the
system undergoes a smooth transition from a ferromagnetic
phase into a phase with dimer ordering between the NNN
spins. In this case of finite systems and with chosen values
of the exchanges, due to the quantum fluctuations the values
of the order parameters dF and dAF deviate from the classical
values 0(−0.75) in the region α > αc. The oscillations of dF

and dAF (quasi-plateaus) at finite N in the region α > αc are
the result of level crossing between the ground state and excited
states of the model.

To obtain additional insight into the nature of the different
phases, we have also calculated the x, y and z components
of the dimer order parameters. We have found that dx

F (d
x
AF)

is very close to the saturation value of 0.25 in the region
α < αc. The dimerization perpendicular to the x axis
remains small and close to zero, in complete agreement with
the magnetization results. As soon as the antiferromagnetic
exchange J2 increases from the critical value αc, dx

F (d
x
AF)

jumps to zero. However, all components of the F-dimer order
parameter (dx,y,z

F ) remain close to zero in the region α > αc,
which shows that there is no long-range ferromagnetic order in
the region α > αc. In contrast, components of the AF-dimer
order parameter (dx,y,z

AF ) smoothly change from almost zero to
the value −0.15. Due to the quantum fluctuations induced by
the ferromagnetic exchange J1, the value of these components
deviates from the saturation value −0.25.

Thus, our numerical results show that the ground state
phase diagram of the frustrated ferromagnetic spin- 1

2 chain for

Figure 2. (a) The F-dimer order parameter dF as a function of
parameter α for different chain lengths N = 20, 26. (b) The
AF-dimer order parameter dAF as a function of parameter α for
different chain lengths N = 20, 26.

small values of the antiferromagnetic exchange (α < 0.5)
contains, besides the gapped ferromagnetic phase, the AF-
dimer phase. Each phase is characterized by its own type of
long-range order: the ferromagnetic order along the x axis in
the ferromagnetic phase and the AF-dimer order between NNN
spins in the AF-dimer phase.

3. The scaling behavior of the ground state energy

The finite-size scaling method is a way of extracting values
for critical exponents by observing how measured quantities
vary as the size L = Na (a is the lattice spacing and we will
consider it to be 1) of the system studied changes. In fact, this
method consists of comparing a sequence of finite lattices. The
finite lattice systems are solved exactly, and various quantities
can be calculated as a function of the lattice size L, for small L.
Finally, these functions are scaled up to L −→ ∞ [29]. Two
steps are needed before these ideas can be realized. First, one
needs a procedure for solving the finite lattice systems exactly.
Second, one needs a procedure for extrapolating from finite to
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infinite L. In step one, we have used the Lanczos method to
obtain the ground state energy. We also checked our numerical
results with the modified Lanczos method [36]. Using the
modified Lanczos method one can get the excited state energies
with the same accuracy as the ground state one. We did not find
any irregular size dependence of the ground state energy in our
numerical results. In the following, we present our finite-size
scaling approach for the ground state energy.

Using the Lanczos method, we can compute the ground
state energy as a function of the chain length N and
the parameter γ as E0(N, γ ). We have implemented the
modified Lanczos algorithm on finite-size chains (N =
10, 12, 14, . . . , 28) by using periodic boundary conditions
to calculate the ground state energy as a function of the
parameter γ .

In the case of γ = 0, the spectrum of the 1D F–AF
J1 − J2 model is gapless. The ground state energy in the
thermodynamic limit behaves as equation (2). By checking
the behavior of the function E0(N, γ = 0) as a function of
Nα (E0 = ANα), we found the best fit to our data yielded
A = −0.1875 and α = 1.0, which shows very good agreement
with the analytical result (equation (2)).

Now let us introduce our finite-size scaling procedure to
find the correct critical exponent of the ground state energy in
the vicinity of the critical point αc = 1

4 . First, we write the
scaling function f (x) as the following expression:

N(E0(N, γ ) − E0(N, γ = 0)) = f (x), (8)

where x = Nγ β is a scaling parameter. As expected, the
behavior of this equation in the combined limit

N −→ ∞, γ −→ 0 (x 	 1) (9)

is consistent with equation (4). Thus it can be assumed that the
asymptotic form of the scaling function is

f (x) ∼ xφ, (10)

and the φ-exponent in the large-x regime (x 	 1) must be
equal to 1. Then we get in the large-x regime

lim
N→∞(x	1)

f (x) = N(E0(N, γ ) − E0(N, 0)) ∼ x . (11)

This equation shows that the large-x behavior of the scaling
function f (x) is linear in x = Nγ β where the scaling exponent
of the ground state energy is β . We should note that in using
the Lanczos method we are limited to consider the maximum
value of N = 30 [37]. Moreover, since the scaling behavior
is restricted to the limit γ −→ 0, we should consider as soon
as possible very small values of γ < 0.002. Therefore, the
value of x cannot be increased in this method. However, we
are not allowed to read the scaling exponent of the ground state
energy which exists in the thermodynamic limit (N −→ ∞
or x 	 1). Thus, we have to find the scaling behavior from
the small-x regime. According to our numerical computations
where N � 30, the small-x regime is equivalent to very small
values of the parameter γ . In this case the ground state energy

Figure 3. The value of the ground state energy E0(N, γ ) versus the
parameter γ close to the critical point γc = 0. The results reported
are for chain lengths N = 20 and the best fit is obtained by using
equation (E0(N, γ ) ∝ γ δ) with δ = 0.999 ± 0.001.

of the finite-size system basically represents the perturbative
behavior [37]

E0(N, γ ) = B(0)(N) + B(1)(N)γ + B(2)(N)γ 2 + · · · (12)

The effect of higher-order terms can be neglected for γ �
0.002 to a very good approximation. The first coefficient in the
perturbation expansion B(0)(N) is the same as E0(N, γ = 0).
To find a relation between other coefficients and the correct
critical exponent of the ground state energy, it is more
convenient rewrite equation (8) as [38]

E0(N, γ ) − E0(N, 0) ∼ g((N1/β )γ ), (13)

where f (x) = Ng(x). This implies

∂m E0

∂γ m

∣∣∣∣
γc

= N
m
β × constant, (14)

where m is the order of the leading term in the perturbation
expansion. Using equation (12) we obtain

B(m)(N) ∝ N
m
β . (15)

Now, if we consider the large-N behavior of B(m)(N) as

lim
N→∞

B(m)(N) � a1 Nθ , (16)

we find that the critical exponent of the ground state energy is
related to the θ -exponent as

β = m

θ
. (17)

The above arguments suggest that we should look for the
large-N behavior of the coefficient B(m)(N). To do this, in
the first step we plotted in figure 3 the ground state energy
E0(N, γ ) versus γ [0.0001 � γ � 0.002] for a fixed size

4
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Figure 4. The value of the scaling function B(1)(N) versus the chain
length N = 10, 12, 14, . . . , 28. The best fit is obtained by using
equation (16) with θ = 0.62 ± 0.01.

N = 20. The best fit to our data is obtained with γ =
0.999 ± 0.001 (E0(N, γ ) ∝ γ δ), which shows that the first
nonzero correction in the perturbation expansion is the first
order (m = 1). We have also implemented our procedure for
different values of the sizes N = 10, 12, 14, . . . , 28 and found
the same results for m as we expected.

In the second step, we fitted the results of the ground state
energy E0(N, γ ) to the polynomials for γ close to γ = 0 as
equation (12) up to m = 1. Using this procedure we found the
coefficient of the first-order correction perturbation, B(1)(N),
as a function of N . Then we plotted in figure 4 the function
B(1)(N) versus N . The results have been plotted for different
sizes N = 10, 12, 14, . . . , 28 to derive the θ -exponent defined
in equation (16). We found the best fit data for θ = 0.62±0.01.
Therefore, using equation (17) we have computed the ground
state energy exponent β = 1.61 ± 0.01. Our numerical
results show very good agreement with the exponent derived
theoretically using equation (4).

4. Summary

To summarize, we have studied the ground state phase diagram
of the frustrated ferromagnetic spin- 1

2 chain for small values of
the parameter α < 0.5. We have implemented the Lanczos
method to obtain the ground state energy in small chains. The
modified Lanczos method [32] is also used for checking the
numerical results. Using the exact diagonalization results, we
have calculated the various order parameters and spin structure
factors as a function of the parameter α. It is found that the
spontaneous magnetization jumps to zero at the critical value
α = αc = 1/4. Increasing the antiferromagnetic exchange
J2 from the critical value αc, the system undergoes a smooth
transition from a ferromagnetic phase into a phase with dimer
ordering between the NNN spins.

On the other hand, it is believed that the ground
state energy behaves as E0 ∼ γ β , where β is a critical

exponent. ¿ From the classical approximations and spin-
wave theory a value of β = 2 was obtained. Using
the variational approaches and perturbation theory, it was
shown that the quantum fluctuations definitely change the
critical exponent and β = 5/3. On the other hand, it
was believed that the exact diagonalization of finite chains
shows a complicated irregular size dependence of the ground
state energy, which makes numerical estimation of the critical
exponent β impossible [27].

In this paper, we have used a finite-size scaling approach
to investigate the critical exponent of the ground state energy.
To estimate the critical exponent of the ground state energy we
introduced a proper scaling function f (x) in equation (8). The
scaling variable is defined as x = Nγ β . According to our
approach the right scaling exponent of the ground state energy
gives a linear behavior of the scaling function f (x) versus x
for large x . But the Lanczos numerical results are not able to
give the large-x behavior.

To find the correct critical exponent of the ground state
energy in the small-x regime (x � 1), we plotted the best
fit to the data of the scaling function B(m)(N), which is the
coefficient of the m-order perturbation expansion of the ground
state energy. The critical exponent of the ground state energy
is computed with the relation between the divergence of the
leading term (B(m)(N)) in the perturbation expansion and the
scaling behavior of the ground state energy (equation (17)).
Our numerical results confirm that quantum fluctuations are
very important and change the critical exponent from the
classical value and β = 1.61 ± 0.02, in good agreement with
the analytical results (equation (4)).
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